

SoK: Model Inversion Attack Landscape: Taxonomy, Challenges, and Future Roadmap

Sayanton V. Dibbo

DARTMOUTH

Model Inversion Attack

Model Inversion Attack

Inference Attack

- Goal: Infer sensitive training data
- Capabilities: other attributes, class labels, confusion matrix, etc.
- Applicable for tabular data domain
- e.g., lifestyle like smoking, drinking, marital status, ethnicity, etc.

	Ethnicity		Gender	Income	Ethnicity
	Native Hawaiian		М	>=50k	Native Hawaiian
	American Indian		F	<50k	American Indian
	White		F	>=50k	White

Subcategories of Inference Attack

Attribute Inference (AI)

- Infer exactly an individual's sensitive attribute values
- Adversary uses output labels and other information
- Other additional information can be:
 - confidence scores
 - information about non-sensitive attributes (tabular data)
- e.g., smoking habit> 'yes' or 'no'

Approximate Attribute Inference (AAI)

- Infer attribute close to an individual's sensitive attribute
- More relaxed than AI
- Uses distance metric to find close attribute
 - Hamming distance
 - Manhattan distance
- e.g., age in tabula data, features in image

Property Inference

- Infer property in the training samples
- Leaks sensitive properties of training data
- Mostly applicable to individual sample
- e.g., someone wearing glasses, hair color, or specialty

Reconstruction Attack

Reconstruction Attack

- Goal: Reconstruct training data
- Capabilities: confidence scores, gradients, masked/blurred image, etc.
- Applicable for image data domain
- e.g., an individual image, a generic class representative image etc.

Actual

Reconstructed

Subcategories of Reconstruction Attack

Typical Image Reconstruction (TIR)

- Reconstructing a class representative
- Requires less additional information
- Higher performance
- e.g., reconstructing class 'airplane' image in CIFAR--10

Individual Image Reconstruction (IIR)

- Reconstructing a particular image of a class
- Requires more granular additional information like
 - Blurred image
 - Masked image
- Difficult for adversary to achieve better performances
- e.g., reconstructing class 'airplane''s 50th sample in CIFAR--10

Model Inversion Attack taxonomy

Systematization of MI Attacks

- First introduced by Fredrikson et al. in 2014
- Paper selection criteria:
 - Fredrikson et al. in 2014 is the baseline
 - Brute force searches in both defense and attack directions
 - Expand the search radius in five dimensions
 - data types (image vs. tabular), i.e., reconstruction vs. inference,
 - target model access types (black-box vs. while-box),
 - inversion technique (training vs. optimization) types,
 - model learning (centralized, distributed, federated) types, and
 - auxiliary information (confidence-based, gradient-based, auxiliary data-based) types

Model Learning Techniques

Paper	Objective Type		Access Type		Inversion Technique		ML Modeling			Auxiliary Information		
	Infer	Recons	Black- box	White- box	Training	Optim	Central	Feder	Distri	Confi	Gradient	Data
Fredrikson		1			1						1	
et al.	1		1			1	1					
[33]												
Fredrikson												
et al.	1	1	1	1		1	1			1		
[23]												
Hidano												
et al.	1		1			1	1			~		
[36]												
Hitaj et		1		1	1	1					1	
al. [32]		v		· ·		· ·		v			v	
Song et	/	1	1	1	1	1	1				1	
al. [20]	v	v	v	v	v	v v	v				v	
Aivodji												
et al.		1	~		1	1	~				1	
[86]												
Melis et	1				1						1	
al. [42]	v		v		v	v v		v			v	
Wang et		1		1	1	1		1			1	
al. [91]		v		· ·		v .		· ·			v	
Yang et		1			1		1					
al. [35]		v	v		v		v			, v		
He et al.		1		1	1				1		1	
[87]		v v	v	v v	v	l v			v		v	
Wei et		1		1		1		1			1	
al. [85]		v		v		l v		, v			v	
Zhang et		1		1		1	1					/
al. [25]		· ·		1		1						v
Salem et		1	1		1		1					1
al. [10]		×	V		· ·		v					•
Zhao et	./		1	1	1		./			1		
al. [41]	v		v .	· ·	1		v			· ·		

TABLE I: A Summary of the Systematization of Model Inversion (MI) Attacks against Target ML Models (*** Infer=Inference, Recons=Reconstruction, Optim=Optimization-based Approach, Central=Centralized, Feder=Federated, Distri=Distributed, Confi=Confidence Score)

A Summary of the Systematization

Foundational Aspects of MI Attacks

- Two basic inversion mechanisms
- 1. Optimization-based approach
 - inversion is turned to a gradient-based optimization problem
 - no training for any surrogate model to do inversion
 - existing works customizes the cost function
- 2. Surrogate model training approach
 - adversary exploits auxiliary information to trains a surrogate model
 - surrogate input-output correlation in the target mode

Target Model

Black-box MI Attacks

- Restricted access type-
 - adversary not have knowledge or control on
 - target model's internal architecture,
 - parameters, weights
 - adversary can query and obtain
 - prediction and confidence scores
- Steps involved in black-box MI attacks are
 - query the target model with data samples (either real or synthetic)
 - obtain predictions, confidence scores based on setup, and
 - apply techniques to identify the best suitable candidate as the estimated sensitive attribute value

Existing black-box/white-box MI Attacks

CIFAR10 [93]

Attack Performance ML Task ML Model Application Paper Attack Dataset Access Class Subcategory Measure Type Fredrikson et IWPC [101] Black-bo AI Individual Accuracy, Regression Linear Regres-AUCROC al. [33] sion Life-stv Fredrikson et Decision tree. IR and Class FiveThirtyEight Accuracy, preci-Classification White-box. and GSS sion, recall, % Deep Neural al. [23] AI Inference and [102] Black-box choice. Individual [103] Facial correct Network and Recognition FiveThirtyEight Classification Linear Regres-Product Recom-Hidano et al. AI Individual # of Posining Black-box Samples, RMSE mendation. [36] [102]. and sion MovieLens [104] (target), Success Lifestyle Rates (Attack) Prediction Hitaj et al. [32] IR Class MNIST [92], and Accuracy Classification CNN White-box Image Inference AT&T dataset of Reconstruction, faces [105] Facial Recognition Song et al. [20] FaceScrub [106], Mean Abs Pixel Classification CNN, RES. Black-box. IR and Class Object CIFAR10 [93], Error (MAPE), SVM, LR White-box Identification. AI Inference LFW [107]. 20 Precision. Sentiment newsgroup [108]. Recall. Analysis and IMDB [109] Similarity MNIST [92], and Inception Score Classification CNN Wang et al. IR Class White-box Image [91] AT&T dataset of [110] Reconstruction, Inference faces [105] Object Identification Yang et al. [35] FaceScrub [106]. Accuracy, Avg. Classification Deep IR Individual Neural Black-box Facial CelebA [111]. Reconstruction Network Recognition, and Class Inference CIFAR10 [93], and Loss (CNN) Medical Imaging MNIST [92] He et al. [87] MNIST 1921. PSNR. SSIM Deep Neural White-box. IR Individual Classification Object and

Network

(CNN)

Black-box

Identification

TABLE II: A Summary of Existing Model Inversion Attacks and their Properties

MI Attacks on Federated Learning

- Deep learning model computational power has become vital
- Collaborative learning is the solution!
- Among collaborative learnings, FL is more promising
 - flexible and privacy-preserving multiparty updating principle
- Recent studies showed FL is also susceptible to privacy attacks
- MI attacks against FL clients focuses on *reconstructing* instances
- Two major subcategories:
 - malicious participant
 - malicious server

• Steps in MI attacks in FL

- target a specific clients' training data class/sample,
- obtain gradient updates from the server (malicious participant)
- utilize the gradient updates and other additional information to training an inversion model

MI Attacks in Online Learning

- Training ML models is expensive
- Retraining from scratch increases burden
- Online learning is the solution!
 - $F_{\text{online}}: M_{\text{cur}} \rightarrow M_{\text{new}}$, where M_{new} is the updated version of M_{cur} (trained with D_{new})
- Can also leak sensitive information on training samples or updating samples
- Steps in MI attacks:
 - $\circ~$ select a Q_{prob} probing set and query the two versions of target models, i.e., M_{cur} and M_{new}
 - utilize the posterior differences obtained from probabilities in outputs of two target models
 - train an inversion model to reconstruct training samples as outputs, taking posterior differences as inputs

Memorization vs. MI Attacks

- Deep learning models can *memorize* training data in form of model parameters
- Adversaries can leverage memorized information to pose privacy attacks
- The more a ML model memorizes >
 - the more the model *overfits*
 - the less it generalizes
 - the more leak training data sensitive private information
 - the more chances for privacy attacks
- Two types of memorization-
 - Unintended
 - Intended

Open Issues & Future Directions

- Attack with the minimal capabilities
 - crucial to identify the minimal set of required capabilities for MI attacks
- Performance stability in MI attacks
 - same attack technique does not perform equally against all target models
- Access type invariant attacks
 - introduce robust attacks applicable to either of the target model access types, i.e., black-box or white-box
 - do not compromising attack performance significantly
- Generalization vs. MI attack performances
 - Memorization and generalization are treated as two sides of the coin
 - empirical establishment of a relationship between generalization and MI attacks is yet to analyze

Open Issues & Future Directions (Cont...)

- Unified comparison metrics
 - no unified suitable metric for attack performance measures
- Reduced dependency on priors
 - existing attacks are highly dependent on training data class marginal priors
- Multimodal data-based MI attacks
 - other data domains like text or audio/speech might be even more vulnerable and consequential
- Federated unlearning vs. MI attacks
 - MI attacks in FL as been studied superficially, e.g., Vertical federated learning (VFL)
 - client might go down or remove, captured by a popular notion called *federated* unlearning

Defenses against MI Attacks

- Comparatively less investigated in existing works
- Always there is a tradeoff between *downstream performance vs. defense efficacy*
- Defenses against back-box MI Attacks
 - Noise Superposition
 - confidence score-based attacks
 - weak correlation between inputs-outputs
 - Perturbation and Rounding based Defenses
 - guided and unguided perturbation on confidence scores
 - Differential Privacy (DP) based Defenses
 - randomization technique
 - Xrnd= $ftar(Xin) + L(Xin, \epsilon)$, where $L(Xin, \epsilon)$ is the Laplacian distribution noise
 - does not ensure attribute level privacy
 - not effective in MI attack defense

Defenses against MI Attacks (Cont...)

- Minimizing Input-Output Dependency
 - One of the root causes in MI attack
 - mutual information regularization
 - Adding additional regularizer term
 - $I(X_{in}, Y^{\prime}) = H(Y^{\prime}) H(Y^{\prime}|X_{in})$ along with cross entropy loss $L(Y^{\prime}, f(X_{in}))$

Paper	Attack Class	Attack Subcate- gory	Dataset	Attack Perfor- mance Measure	ML Task	ML Model	Access Type	Defense Tech- nique	Application
Fredrikson et al. [33] Fredrikson et al. [23]	AI IR and AI	Individual Class Inference and Individual	IWPC [101] FiveThirtyEight [102] and GSS [103]	Inversion Accuracy Inversion Accuracy, % correct	Regression Classification	Linear Regres- sion Decision tree, Deep Neural Network	Black- box White- box, Black- box	DP Reducing Confidence Precision, Sensitive Feature	Personalized Medicine Life-style choice, Medical diagnosis, and Facial
Yang et al. [29]	IR	Individual	FaceScrub [106], CIFAR10 [93], Purchase [122]	Classifier Accuracy, Inversion Error, Inference Accuracy, Confidence	Classification	Deep Neural Network	Black- box	Prioritization Confidence Score Purification	Recognition Person Idetification, Facial Recognition
Wang et al. [34]	IR and AI	Individual	FaceScrub [106], CelebA [111], CIFAR10 [93], IWPC [101], FiveThirtyEight [102]	Score Distortion, and Training Time Accuracy, F-1, AUROC, L2 Distance, MSE	Classification Regression	, Deep Neural Network, Decision Tree, Linear Regression	White- box, Black- box	Mutual Information Regularization	Person Idetification, Medical Imaging, Life-style choice, Facial
Tom et al. [98]	IR	Individual	MNIST [92]	Accuracy	Classification	Deep Neural Network	Black- box	Laplacian Noise Defense	Recognition Object Identifi- cation

TABLE IV: A Summary of Different Defenses Against MI Attacks

Defenses in the Literature

Open Issues & Future Directions

- Defending MI attacks in FL
- Target model agnostic defenses
- Defense vs. target model utility
- Generalizable defense framework
- Adaptive Multi-Factor defense

Discussions and Future Work

- Robust model inversion attacks
 - Model inversion attack is still in flux
 - Identify least set of capabilities
 - Target model agnostic
 - Target model using different techniques used fairly recently-- zero short, few shot, and contrastive learning
- Generalized defense against inversion attacks
 - Model agnostic
 - Identifying root causes and contributing factors
 - Multifactor-based defenses
- Multimodal MI attacks
 - Data volume is increasing
 - Data modality is also ever-growing

• Thank You!

•For any Questions, reach out to:

•sayanton.v.dibbo.gr@dartmouth.edu